Notes on Ghirardi/Marineto (2004)

\(
\newcommand{\lt}{\left}
\newcommand{\me}{\middle}
\newcommand{\rt}{\right}
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\ua}{|\hspace{-3 pt}\uparrow\ra}
\newcommand{\da}{|\hspace{-3 pt}\downarrow\ra}
\newcommand{\uabra}{\la\uparrow\hspace{-3 pt}|}
\newcommand{\dabra}{\la\downarrow\hspace{-3 pt}|}
\)

In this paper Ghirardi and Marineto offer conditions under which bipartite states of indistinguishable particles should be considered entangled. These conditions are not the same as for distinguishable particles. In the distinguishable case, it’s easy: two particles are non-entangled of and only if they can be written as a product state. I.e. the Schmidt number is 1 (number of terms in Schmidt decomposition). In the indistinguishable case, this would mean that fermions are always entangled, and that bosons are only non-entangled if we have a state that can be written as \(| \phi \ra_1 | \phi \ra_2\). But, there is no way to measure ‘particle 1’ and ‘particle 2’ seperately (unlike the distinguishable case). Instead, measurement operators are symmetric.

G&M start with a definition for entanglement: that to each particle we can describe a full set of definite properties. They then formalize this and come up with the criterion that the state satisfies

\(\la\phi|E_P|\phi\ra = 1,\)

where

\(
\begin{align}
E_P &= P_1 \otimes (\mathbb{1} – P_2) + (\mathbb{1} – P_1) \otimes P_2 + P_1 \otimes P_2\\
&= \mathbb{1} – (\mathbb{1} – P_1) \otimes (\mathbb{1} – P_2)
\end{align}
\)

(Is \(E_P\) a projector itself? Yes it is. A sum of orthogonal projectors is itself a projector. This projector corresponds to the question: “is the state corresponing to P occupied at least once?” or “Is there at least one particle in the state \(|\phi\ra\)?”). This in turn implies that for fermions, a state is non-entangled iff it is the antisymmetrization of a product state. For bosons, it implies that a state is non-entangled iff it is the symmetrization of a product state of two orthogonal states, or it is the product of two identical states.

This in turn can be linked to the Schmidt number/Slater number of the bipartite state, and to the Von Neumann entropy of the reduced 1-particle states (the reduced states are identical for ‘particles’ 1&2. The Slater number is for antisymmetrized states, and is just half the Schmidt number (because of the antisymmetrization, the Schmidt terms come in pairs, so it is always an even number and we can rewrite the sum using those antisymmetrical pairs, and have half the number of terms in the sum, i.e. a Slater number amount of terms). The Von Neumann entropy is defined as \(-Tr \rho \log \rho\) (log base 2). For a pure state, this equals 0, for a mixed state, it is greater than 0. For a perfectly entangled bipartite state, it is \(-2*1/2 \log 1/2 = 1\)

For fermions, a state is nonentangled iff the Slater number of the state is 1 (Schmidt number 2). The (Von Neumann) entropy is 1. If the state is entangled, both the Slater number and the entropy are higher. G&M interpret a entropy of 1 because of the unavoidable uncertainty ‘which particle has which properties’, and a higher entropy signifies an additional uncertainty because of the entanglement. (I’m not so certain of this). Note that because of degeneracy in the Schmidt decomposition a nonentangled state can also be written as the antisymmetrization of two different orthogonal states (spanned by the other two states).

For bosons, a state is nonentangled iff…

  • the Schmidt number of the state is 1 (which is equivalent to the Von Neumann entropy being 0) OR
  • the Schmidt number is 2 and the Von Neumann entropy is 1 (then it is a symmetrization of two orthogonal states)

Note that two bosons are entangled if the state is a symmetrization of two nonorthogonal states. Then it can also be written as a|1>|1> + b|2>|2>. Also note that a non-entangled states that is the symmetrization of two orthogonal states can again be rewritten as that of two other states (spanned by the original states).

G&M state, but do not proof, that entanglement coincides with being able to violate Bell inequalities and perform teleportation. I beg to differ.

Some points I want to investigate and write about… (I have now included comments after writing more)

  • The Schmidt decomposition has a particular form for bosons and fermions because of the (anti-)symmetrization. G&M allude to theorems in matrix theory about that. I wonder if it can be shown simpler. Also in the bosons case the coefficients are real, in the fermion case, they are complex (conjugates). I wonder why, since in the Schmidt decomposition, the coefficients are always real.

    It turns out it’s not so easy to make it simpler. The reason is that, even for (anti-)symmetrical states, the two Schmidt bases need not be identical. The Slater decomposition has in fact different basis states than the Schmidt one (you need those for the minus signs)
  • It seems a bit weird that in the boson case, the state is entangled if it is the symmetrization of two non-orthogonal states. Can I show that a Bell inequality can be violated in that way?

    No, and this is criticism to G&M, what do they mean with violating a Bell inequality in this case?
  • I have a counterexample: a G&M-nonentangled state which violates a Bell inequality. I wonder if there is also a counterexample of a G&M-entangled state that cannot violate a Bell inequality?

    I don’t think so, it seems that for every state a Bell inequality can be violated, if you pick your measurement operators weird enough!
  • I think the G&M notion of entanglement only works if the measurement locations coincide with properties that distinguish the particles (projectors P and Q). This can be made more precise? (maybe a project for later)

    Yes I think so. But for non-orthogonal boson states, such projectors do not exist.
  • Is (1) a projector, and what happens when applying it to a symmetrization of non-orthogonal states?

    Yes it is. When applying it to such a state, you get 1 for the non-orthogonal states. When applying the counting operator which also has a 2 in it, you get an expectation value between 1 and 2.

Schmidt decomposition

Ok, it’s two days later, and I figured out that the Schmidt decomposition thing is in fact more subtle than I initially thought. This is mainly because the Schmidt bases do not have to be the same in general, even for (anti-)symmetric states. For fermions, they can not even be the same, if the Schmidt coefficients are all positive, the negative sign of the antisymmetry has to come from somewhere, more on that later. So we are just going to repeat the decompositions from G&M and observe some relations to the Schmidt decomposition.

For fermions, there is the decomposition

\(\sum_{I=1}^N a_i \frac{1}{\sqrt{2}} (|2i-1\ra_1|2i\ra_2 – |2i-1\ra_1|2i\ra_2)\)

where \(a_i\) are complex and \(\sum_i |a_i|^2 = 1 \). Now define

\(
\begin{align}
|\bar{1}\rangle &:= \alpha^*|1\rangle – \beta|2\rangle & |\bar{2}\rangle &:= \beta^*|1\rangle + \alpha|2\rangle\\\
|1\rangle &= \alpha|\bar{1}\rangle + \beta|\bar{2}\rangle & |2\rangle &= -\beta^*|\bar{1}\rangle + \alpha^*|\bar{2}\rangle
\end{align}
\)

where \(|\alpha|^2 + |\beta|^2 = 1\). Then \(|1\ra|2\ra – |1\ra|2\ra = |\bar1\ra|\bar2\ra – |\bar1\ra|\bar2\ra\). The unitary operator that takes non-barred to barred vectors is

\(
U =
\begin{pmatrix}
\alpha^* & \beta* \\
-\beta & \alpha
\end{pmatrix};
U^{-1} = U^\dagger =
\begin{pmatrix}
\alpha & -\beta^* \\
\beta & \alpha^*
\end{pmatrix}
\)

This is not the most general unitary operator; it cannot add separate phase factors to basis states. For example, there is also the unitary matrix

\(
U =
\begin{pmatrix}
i & 0 \\
0 & 1
\end{pmatrix}
\)

The state can also be Schmidt decomposed:

\(
|\psi\ra = \sum_i c_i |a_i\rangle |b_i\rangle
\)

where all \(c_i\) are positive. The first decomposition can be related to the Schmidt decomposition by letting \(c_{2i} = c_{2i-1}\) and \(|b_{2i}\ra = |a_{2i-1}\ra, |b_{2i-1}\ra = -|a_{2i}\ra\).

Let’s turn to bosons. Apparently any symmetric state can be written

\(
\sum_i a_i |i\ra |i\ra
\)

where the a_i are positive. This is already a Schmidt decomposition, where the Schmidt bases are identical. Define

\(
\begin{align}
|\bar1\ra &= \alpha|1\ra + \beta|2\ra \\
|\bar2\ra &= -\beta|1\ra + \alpha|2\ra
\end{align}
U =
\begin{pmatrix}
\alpha & -\beta \\
\beta & \alpha
\end{pmatrix};
U^{-1} = U^\dagger =
\begin{pmatrix}
\alpha & \beta \\
-\beta & \alpha
\end{pmatrix}
\)

with \(\alpha, \beta\) real! Now \(|\bar1\ra|\bar1\ra + |\bar2\ra|\bar2\ra = |1\ra|1\ra + |2\ra|2\ra\).

Suppose \(|\psi\ra = \frac{1}{\sqrt{2}}(|\phi\ra|\xi\ra + |\xi\ra|\phi\ra)\). Define

\(
\begin{align}
|1\ra &= \frac{1}{\sqrt{2}}(|\phi\ra + |\xi\ra) & |\phi\ra &= \frac{1}{\sqrt{2}}(|1\ra – i|2\ra)\\
|2\ra &= \frac{i}{\sqrt{2}}(|\phi\ra – |\xi\ra) & |\xi\ra &= \frac{1}{\sqrt{2}}(|1\ra + i|2\ra)
\end{align}
\)\(
U = \frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 1 \\
-i & +i
\end{pmatrix};
U^{-1} = U^\dagger =
\begin{pmatrix}
1 & +i \\
1 & -i
\end{pmatrix}
\)

Then \(|\psi\ra = \frac{1}{\sqrt{2}}(|1\ra|1\ra + |2\ra|2\ra)\).

Counting operators

A counting operator is an operator which ‘counts’ the number of particles that are in a certain state, or in a subspace. A state might be in an eigenstate of a counting operator, in which case the number of particles in that state/subspace is fixed, but it might also be in a superposition. The expectation value gives the averaged number of particles. Let’s start simple: two particles in total. The counting operator for state \(|\psi\ra\) is then

\(
1 \cdot ([\phi] \otimes (\mathbb{1} – [\phi]) + (\mathbb{1} – [\phi]) \otimes [\phi]) + 2 \cdot [\phi] \otimes [\phi]
\)

where \([\phi] := |\phi\ra\la\phi|\). More generally, for a subspace on which the projector \(P\) projects, we have

\(
1 \cdot (P \otimes (\mathbb{1} – P) + (\mathbb{1} – P) \otimes P) + 2 \cdot P \otimes P
\)

The question: “Is there 0, 1 or 2 particles in some state” must always be answered with YES:

\(
(\mathbb{1} – P) \otimes (\mathbb{1} – P) + P \otimes (\mathbb{1} – P) + (\mathbb{1} – P) \otimes P + P \otimes P = \mathbb{1}
\)

Also, summing all particles in a complete set of orthogonal states/subspaces must yield the total number of particles:

\(
\sum_i 1 \cdot (P_i \otimes (\mathbb{1} – P_i) + (\mathbb{1} – P_i) \otimes P_i) + 2 \cdot P_i \otimes P_i = 2\cdot\mathbb{1}
\)

For more particles, the operator becomes a bit cumbersome because it involves a lot of permutations. But we can write it like this:

\(
\sum_{i=1}^N i \cdot \mathrm{Comb}(P^i \otimes (\mathbb{1} – P)^{N-i})
\)

where Comb() gives all the combinations of tensor product orderings (not permutations because we don’t want double counting). We might even construct a counting operator that works for all N simultaneously, i.e. in a Fock-like Hilbert space to be defined later:

\(
\sum_{N=1}^\infty \sum_{i=1}^N i \cdot \mathrm{Comb}(P^i \otimes (\mathbb{1} – P)^{N-i})
\)

Non-orthogonal boson states

G&M devote considerable attention to two-boson states that are the result of anti-symmetrising a product state of two non-orthonal states (we ignore normalisation again):

\(
|\psi\ra = |\phi\ra |\xi\ra +|\xi\ra |\phi\ra
\)

By decomposing \(|\xi\ra\) into \(|\phi\ra, |\phi_\perp\ra\), where the latter state is perpendicular to \(|\phi\ra\), the state can be written

\(
|\psi\ra = a \cdot |\phi\ra |\phi \ra + b \cdot (|\phi\ra |\phi_\perp\ra + |\phi_\perp\ra |\phi\ra)
\)

This state is an eigenstate of \(E_P\) both for \(|\xi\ra\) and \(|\phi\ra\). Meaning that for both states there is at least one particle occupying it. In terms of counting operators, the state is in a superposition of 1 and 2 particles occupying each state. If one would measure the number of particles in one of the states, the outcome would be 1 or 2. The expectation value is somewhere inbetween 1 and 2.

According to G&M, such a state is entangled. This follows from their definition of nonentanglement, which to them is equivalent to each constituent possessing a complete set of properties. G&M state that in this case the statement “there is exactly one particle possessing properties P” is not true. Correct, because it can be 1 or 2 particles. Still it is not entirely clear for me why this should count as entangled. The state \(|\phi\ra|\phi\ra\) does count as nonentangled to them, although then the above statement is also false, since there are 2 particles possessing those properties then. Maybe it has to do with the fact that with the latter case or with orthogonal states, measuring \([\phi]\) does not disturb the state, while with nonorthogonal states, it does.

It is also not clear to be how a Bell inequality could be violated with such states. G&M state that this is a crucial aspect of entanglement. But i would say BIV involves two distant parties, and if there are two particles separated, then they must be orthogonal because of non-overlapping wave packets in the spatial domain. OK, we could allow for the possibility of two particles at one side, but if we then allow this also for orthogonal states, then we get the counterexample I came up with before.

Counterexample

Just to be complete, I’ll repeat the counterexample here, both for bosons and for fermions:

\(
\begin{align}
|\psi\ra &= (|L\ra + |R\ra)\ua(|L\ra + |R\ra)\da \pm (|L\ra + |R\ra)\da(|L\ra + |R\ra)\ua\\
&= (|L\ra|L\ra + |R\ra|R\ra) (\ua\da \pm \da\ua)\\
&+ |L\ra|R\ra (\ua\da \pm \da \ua) \pm |R\ra|L\ra (\da\ua \pm \ua\da)
\end{align}
\)

Now, it can be that two particles are found on the left and two to the right. But IF one particle is found at each location, then the spins are maximally entangled (singlet for fermions, with a plus sign for bosons). So a Bell inequality can be violated (one can also write down symmetric operators for this, no need to explicitly talk about postselection).

A short note on the anti-symmetrisation of electron spin states

\(
\newcommand{\lt}{\left}
\newcommand{\me}{\middle}
\newcommand{\rt}{\right}
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\ua}{|\hspace{-3 pt}\uparrow\ra}
\newcommand{\da}{|\hspace{-3 pt}\downarrow\ra}
\newcommand{\uabra}{\la\uparrow\hspace{-3 pt}|}
\newcommand{\dabra}{\la\downarrow\hspace{-3 pt}|}
\)

When discussing EPRB experiments, often spin states of electrons are used. Suppose we have two spatially separated electrons. The paradigmatic state that is used is the spin-singlet state

\(|\psi_1\ra := \sqrt{\frac12}(\ua_A \da_B – \da_A \ua_B).\)

Then, when one of the spins is measured, one usually talks about, for example, ‘measuring the spin of particle A’. This suggests that A refers to a particle localised at one location (say on the left), and B to a particle localised at another location (say on the right). We can also consider the case where one electron is in a spin-up eigenstate and the other in a spin-down eigenstate:

\(|\psi_2\ra := \ua_A \da_B.\)

There is some confusion in the literature concerning the relation between writing down states in this way and electrons being fermions. Because of the symmetrisation postulate, fermions always have to be in anti-symmetric states. Sometimes it is therefore suggested that a state like \(|\psi_2\ra\) is strictly invalid, because it is not anti-symmetric. Also, it is sometimes said that \(|\psi_1\ra\) is a valid state, because it is anti-symmetric. Also, sometimes it is said that in order to write down the correct, anti-symmetric state, the spatial wavefunction has to be included, so that, for example, \(|\psi_1\ra\) becomes

\(|\psi_3\ra := \sqrt{\frac12}(\ua_A \da_B – \da_A \ua_B) \otimes \sqrt{\frac12}(|L\ra_{A} |R\ra_{B} + |R\ra_{A} |L\ra_{B}),\)

Here, \(|L\ra\) and \(|R\ra\) are two (nearly) orthogonal spatial wavefunctions: \(|L\ra\) with some narrow Gaussian peak on the left, and \(|R\ra\) with a similar peak on the right. This is, for example, mentioned by Dieks (2016). Dieks also claims that this means that the spins are not ‘localised’ at the locations of the particles, since the spatial- and spin-part of the wavefunction factorise. This would then suggest, Dieks continues, that a single spin measurement is not the measurement of a local property, namely the spin of the localized electron, but of some non-localised spin property of both particles.

In this short note we want to clear up this situation (hopefully, it will get rid of more confusion than it creates). First, we will show that there is nothing wrong with writing down states like \(|\psi_2\ra\). Mathematically this is perfectly fine, and this is a correct state for fermions. The fact that the anti-symmetry of this state is not visible has to do with the fact that the subsystem decomposition that is used in this notation is a decomposition in ‘electron located left’ and ‘electron located right’. This state can be translated into a state including the spatial part, wherein the asymmetry of the state is clearly visible. Second, we will show that \(|\psi_3\ra\) is not the correct state when adding the spatial part to \(|\psi_1\ra\). This is because in \(|\psi_1\ra\), the subsystems are ‘electron on the left’ and ‘electron on the right’, while in \(|\psi_3\ra\), the subsystems are ‘electron A’ and ‘electron B’, with both particles having a component in the wavefunction being on the left, and a component being on the right. In fact, it will turn out that adding the spatial part to \(|\psi_1\ra\) will lead to a state having the same form as \(|\psi_3\ra\), but the fact that the spin- and spatial parts factorise is coincidental, and we will show that for slightly different states, which also violate the Bell inequalities, no such factorisation occurs.

First, we concentrate on state \(|\psi_2\ra\). This state means to represent the left electron being in a definite spin-up state, and the right electron being in a definite spin-down state. To emphasise this, we replace the subsystem labels by ‘L’ and ‘R’:

\(|\psi_4\ra := \ua_L \da_R.\)

Translating this state into a state including the spatial wavefunction, we get

\(\sqrt{\frac12}(\ua_1 |L\ra_1 \da_2 |R\ra_2 – \da_1 |R\ra_1 \ua_2 |L\ra_2),\)

where we introduced subscripts 1 and 2 to indicate that these are not localised subsystems. Note that this state is explicitly anti-symmetric. We can do the same thing with three other (orthogonal) states:

\(
\begin{align}
\ua_L \ua_R &\mapsto \sqrt{\frac12}(\ua_1 |L\ra_1 \da_2 |R\ra_2 – \da_1 |R\ra_1 \ua_2 |L\ra_2)\\
\da_L \da_R &\mapsto \sqrt{\frac12}(\da_1 |L\ra_1 \da_2 |R\ra_2 – \da_1 |R\ra_1 \da_2 |L\ra_2)\\
\da_L \ua_R &\mapsto \sqrt{\frac12}(\da_1 |L\ra_1 \ua_2 |R\ra_2 – \ua_1 |R\ra_1 \da_2 |L\ra_2)
\end{align}
\)

Note that the space spanned by these 4 vectors is a well-defined Hilbert space. Now, we can write down states using the subsystem decomposition ‘particle 1’ and ‘particle 2’, including the spatial parts, as on the right-hand sides of the above formulae. But we might just as well decompose this 4-dimensional Hilbert space into two 2-dimensional subsystems L and R (as on the left-hand sides). So, there is nothing wrong with writing states like \(|\psi_2\ra\), as long as we keep in mind that the subsystems refer to ‘electron on the left’ and ‘electron on the right’. Of course, this only works if the particles are spatially separated, so that the corresponding wave functions are (nearly) orthogonal.

Now that we know how to translate the four basis states to states including spatial parts, we can also look how state \(|\psi_1\ra\) looks when translated to a wavefunction including spatial parts. In fact, it becomes

\(
\begin{align}
|\psi_5\ra &= \sqrt{\frac14} \lt( \lt( \ua_1 |L\ra_1 \da_2 |R\ra_2 – \da_1 |L\ra_1 \ua_2 |R\ra_2 \rt) – \lt( \da_1 |R\ra_1 \ua_2 |L\ra_2 – \ua_1 |R\ra_1 \da_2 |L\ra_2 \rt) \rt)\\
&= \sqrt{\frac12} \lt( \ua_1 \da_2 – \da_1 \ua_2 \rt) \otimes \sqrt{\frac12} \lt( |L\ra_1 |R\ra_2 + |R\ra_1 |L\ra_2 \rt)
\end{align}
\)

Note that the spatial- and spin part factorise, and that the spin part has exactly the same form as the original state \(|\psi_1\ra\). However, there is a crucial difference: in \(|\psi_1\ra\) the subsystems refer to ‘left electron’ and ‘right electron’, while in \(|\psi_5\ra\) the subsystems refer to ‘electron 1’ and ‘electron 2’ (both particles being neither left nor right). Therefore, the subsystem labels need to be different in both states, and therefore \(|\psi_3\ra\) is not the state one gets by adding the spatial part to \(|\psi_1\ra\).

Also, the factorisation of the state \(|\psi_5\ra\) and the spin part having exactly the same form as in \(|\psi_1\ra\) is rather coincidental. Consider a state with slightly different coefficients (still close enough to a maximally entangled state so that a Bell inequality can be violated with it):

\(|\psi_6\ra := \sqrt{\frac{49}{100}}\ua_1 \da_2 – \sqrt{\frac{51}{100}}\da_1 \ua_2.\)

Adding the spatial part, we get

\(
\begin{align}
\sqrt{\frac12} \lt( \lt( \sqrt{\frac{49}{100}} \ua_1 |L\ra_1 \da_2 |R\ra_2 – \sqrt{\frac{51}{100}} \da_1 |L\ra_1 \ua_2 |R\ra_2 \rt) – \lt( \sqrt{\frac{49}{100}} \da_1 |R\ra_1 \ua_2 |L\ra_2 – \sqrt{\frac{51}{100}}\ua_1 |R\ra_1 \da_2 |L\ra_2 \rt) \rt).
\end{align}
\)

Note that now, the state does not factorise in a spin- and spatial part (and accordingly, the spin part has not the same form as \(|\psi_6\ra\)).

Note that, when working with the decomposition in ‘electron 1’ and ‘electron 2’, the measurement operators change accordingly. For example, measuring the \(z\)-spin of the left particle, one has to observable

\(
\sigma^L_z \otimes \mathbb{I}^R
\)

in the left-right decomposition. In the 1-2 decomposition, this becomes

\(
\frac{\hbar}{2} (\frac12(\ua_1 |L\ra_1 \da_2 |R\ra_2 – \da_1 |R\ra_1 \ua_2 |L\ra_2) (\uabra_1 \la L|_1 \dabra_2 \la R|_2 – \dabra_1 \la R|_1 \uabra_2 \la L|_2)\\
+ \frac12(\ua_1 |L\ra_1 \ua_2 |R\ra_2 – \ua_1 |R\ra_1 \ua_2 |L\ra_2) (\uabra_1 \la L|_1 \uabra_2 \la R|_2 – \uabra_1 \la R|_1 \uabra_2 \la L|_2))\\
– \frac{\hbar}{2} (\frac12(\da_1 |L\ra_1 \da_2 |R\ra_2 – \da_1 |R\ra_1 \da_2 |L\ra_2) (\dabra_1 \la L|_1 \dabra_2 \la R|_2 – \dabra_1 \la R|_1 \dabra_2 \la L|_2)\\
+ \frac12(\da_1 |L\ra_1 \ua_2 |R\ra_2 – \ua_1 |R\ra_1 \da_2 |L\ra_2) (\dabra_1 \la L|_1 \uabra_2 \la R|_2 – \uabra_1 \la R|_1 \dabra_2 \la L|_2))
\)

One now understands why it is much more convenient to decompose the two-electron system using their spatial location, and not using particle labels!

In fact, if one wants to be always explicit about anti-symmetrisation, one would always have to write down a state for every electron in the universe and anti-symmetrise it! Consider a universe consisting of four electrons. When decomposing into subsystems ‘electron 1, 2, 3, 4’, because of the anti-symmetrisation this state does not factorise into, for example, a pure state for electrons 1+2 and a pure state for electrons 3+4. Therefore, we see that also when writing down states like \(|\psi_4\ra\) we have already used the fact that the two electrons under consideration belong to some localised subsystem of the universe. One can of course, using a similar procedure as described above, translate the states into states of the four-electron universe, where the antisymmetry is clearly visible. However, this would be unnecessarily complicated, and completely impossible for the actual universe, which, according to the latest estimates, contains about \(10^{80}\) electrons.

References

Dieks, Dennis (2016) Quantum Information and Locality. [Preprint] URL: http://philsci-archive.pitt.edu/id/eprint/12313 (accessed 2017-05-09)

Ervaringen van een treinreizende forens

Al een tijdje werk ik in Rotterdam, dus reis ik regelmatig met de trein tussen Amsterdam en Rotterdam. Hier een overzicht van wat ik in anderhalf jaar forenzen geleerd heb. Mogelijk vinden andere forenzen hier iets amusants of nuttigs tussen.

Treindeuren dicht? Kijk om je heen!

Je kent het wel: met alle pijn en moeite denk je net op tijd het perron op te rennen, de trein staat er nog, maar de deuren zijn al dicht en de knop om de deur open te doen doet ook al niets meer. Maar er is nog hoop! De conducteur doet namelijk altijd als laatste handmatig één set deuren dicht.  Kijk dus om je heen, vind de conducteur en ren met een meelijwekkend gezicht op hem/haar af. Meestal laat deze je dan nog binnen. Regelmatig heb ik gezien dat mensen niet doorhadden dat ze deze optie nog hadden. Overigens raad ik aan deze situatie überhaupt te voorkomen door een paar minuten eerder naar het station te vertrekken, maar misschien heb je net als ik het talent/gebrek om vaak alleen maar precies op tijd treinen te kunnen halen…

Overigens is het goed te weten dat de vertrektijd van treinen in principe de tijd is dat de trein ook echt gaat rijden – in het “ideale” geval gaan de deuren dus al 10-20 seconden daarvoor dicht!

Reis, zo mogelijk, buiten de spits

Natuurlijk is het bij veel banen met vaste tijden lastig om buiten de spits te reizen (daarom is de spits immers de spits!). Maar als je zoals ik flexibele werktijden hebt, dan loont het op meerdere vlakken om buiten de spits te reizen. Ten eerste is het vaak voordeliger; met een Dal Voordeel abonnement krijg je 40% korting, en met een Dal Vrij abonnement kun je voor €99 euro per maand gratis reizen buiten de spits. Ten tweede is het veel rustiger in de trein, en daardoor is het veel prettiger werken en lezen.

Bij de NS zijn de spitstijden 6.30-9.00 en 16.00-18.30. Echter, of je korting krijgt hangt alleen af van het moment van inchecken, bovendien is er altijd een marge van 5 minuten in jouw voordeel. Oftewel, je profiteert van daltarieven als je incheckt voor 6.35, tussen 8.55 en 16.05, of na 18.25. Regelmatig wacht ik tot de klok op 18.25 staat voor ik incheck, en meestal staan er dan meerdere mensen om dezelfde reden bij de incheckpaal te wachten (je voelt je bijna lid van een club). Officieel moet je binnen een half uur na het inchecken je reis beginnen, maar ik weet niet hoe streng dit gecontroleerd wordt. Meestal reis ik na 8.55, maar zo nu en dan check ik in voor de spits, dus t/m 6.34. Meestal kom ik dan met mijn fiets het station inrijden om net op tijd in te checken, vervolgens is er alle tijd om de fiets rustig weg te zetten en koffie en een croissantje te halen…

Mocht je je reis beginnen in de spits en eindigen buiten de spits, dan kun je overwegen onderweg, na het ingaan van de daluren, uit te stappen om uit- en in te checken, zodat je de rest van de reis tegen daltarief kunt reizen. Als de in-/uitcheckpaal in de buurt van het perron is dan kun je vaak dezelfde trein weer instappen, dit is vaak zo op kleinere stations of op stations waar je kunt overstappen op de tram of de metro. Anders kun je wachten op de volgende trein. Zo neem ik vaak de trein van 18.12 vanaf Rotterdam Blaak naar Schiedam Centrum, om vervolgens 5 minuten te wachten op de volgende trein richting Amsterdam, die om 18.26 vertrekt. (Overigens is Schiedam Centrum zo’n station waar je dezelfde trein weer kunt halen, mits je a) helemaal voorin de trein uitstapt b) als een malloot de trap afrent, uit- en incheckt, de trap weer opsjeest, de trein inspringt en je plek kwijt bent. Niet chill dus.)

Heb je nog een ‘good old’ Voordeelurenabonnement? Houd deze voor altijd!

Tegenwoordig niet meer te krijgen, maar ze bestaan nog wel, voor €60 euro per jaar 40% korting buiten de ochtendspits, dus ook in de avondspits! Via de “Uitgestudeerd” actie ben ik begin 2013 als één van de laatsten in het bezit gekomen van een dergelijk abonnement. De NS heeft een jaar later doodleuk dit abonnement bij mij, en bij vele andere “uitgestudeerden”, beëindigd, terwijl in de algemene voorwaarden staat dat het een doorlopend abonnement is. Gelukkig hebben sommigen hierover geklaagd bij het OV-loket en gelijk gekregen. Een telefoontje was daarom genoeg om mijn abonnement weer terug te krijgen, en ik gebruik hem nog steeds in de avondspits. Eenmaal opgezegd kun je dit abonnement niet weer krijgen, dus houd het! Ik weet niet hoe lang de NS dit abonnement nog laat bestaan, maar gezien de kritiek die ze over zich heen zullen krijgen als ze het afschaffen zal het nog wel even duren.

Goede zitplaatsen en de terreur van de stiltecoupé

Meestal reis ik in de “standaard” dubbeldekker (zo eentje). Ik zit het liefst in een “tweezitter” in plaats van een plek met stoelen tegenover elkaar, omdat ik dan een tafeltje heb, en die vierzitters zijn gewoon niet fijn voor mensen met lange benen. Mocht jij dezelfde voorkeuren hebben, dan is het goed te weten dat op de bovenverdieping alleen maar vierzitters zijn, en niet elke benedenverdieping heeft tweezitters. Kijk dus, als de trein aankomt, vast naar binnen waar de tweezitters zijn.

En dan de stiltecoupé… Ik zit er bijna nooit meer in, en dat wel om de volgende redenen: 1) De stiltecoupé is bij een dubbeldekker altijd in de tweede wagon boven. Dus vierzitters. 2) Ik vind de stiltecoupé in theorie een topidee, maar werkt het in de praktijk vaak niet. Vooral bij dubbeldekkers is de stiltecoupé heel onduidelijk aangegeven, namelijk met raamstickers op ramen die schuin naar boven staan. Regelmatig komen er dus mensen binnen terwijl ze zeggen “Oh, een stiltecoupé!” waarna er hardop wordt bedacht of men van plan is zich ook echt stil te houden of niet. 3) Als er iemand toch praat in de stiltecoupé is dit extra afleidend, omdat de tekst goed te volgen is, in tegenstelling tot andere delen van de trein waar meestal meerdere mensen door elkaar praten. Bovendien komt bij mij dan voortdurend de vraag of ik er iets van moet zeggen of niet. Dit maakt het bijna onmogelijk me op mijn werk/krant/boek te concentreren. En ik ben een keer zo hard uitgescholden toen ik twee kakelende meiden vroeg stil te zijn, dat ik toen maar in een andere wagon ben gaan zitten. 4) Er wordt vaak niet goed gehandhaafd. Dus, mensen praten, de conducteur komt langs, en die zegt er niets van.

Kortom, ik zit liever in een “gewone” coupé met licht rumoer dan in een stiltecoupé waarin ik me groen en geel erger aan elk geluidje. Als ik te veel last heb van omgevingsgeluid zet ik mijn koptelefoon op. Overigens heb ik wel van andere mensen gehoord dat de stiltecoupé beter werkt in de spits, omdat er dan echt veel mensen zijn die het stil willen hebben, waardoor de sociale controle beter functioneert.

Trek de kosten van je woon-werkverkeer af van de belasting

Voor elke kilometer die je reist, en die niet vergoed wordt door je werkgever, kun je € 0,19 aftrekken van je inkomen. Zit je in schijf 2 of 3, dan scheelt dat dus 42% * € 0,19 = €0,08 per kilometer. Dit kan tot maximaal 75 kilometer enkele reis (dus 150 km retour) per dag. Vaak kun je dit voordeel via je werkgever regelen, bij mij is het bijvoorbeeld zo dat ik een deel van mijn vakantiegeld en eindejaarsuitkering, waarover ik 42% belasting betaal, “inlever”, waarna ik het vervolgens weer belastingvrij terugkrijg, verspreid over het hele jaar. Check hiervoor even bij je HR afdeling. Kan het niet via de werkgever, dan kun je het invullen bij de belastingaangifte. Dit loont de moeite, het kan gaan om duizenden euro’s per jaar!

Heb je een NS abonnement? Pak eens de ICE!

Je ziet ze misschien wel eens staan, deze moderne Duitse treinen. Ze rijden bijvoorbeeld tussen Amsterdam en Frankfurt, via Utrecht en Arnhem. Goed nieuws als je een NS abonnement heb (een Dal Voordeel is genoeg, hoewel hier wat onduidelijkheid over is), je hoeft dan namelijk geen toeslag te betalen om in deze trein te reizen. En de 2e klas in deze trein is bijna luxer dan de 1e klas in NS treinen, zo is de geluids- en schokdemping van de ICE merkbaar beter dan die van zijn geel-blauwe broertje.

Onterecht saldo van je OV-chipkaart afgeschreven? Bel de NS!

Ik reis zelf met twee OV-chipkaarten: een met een Dal Vrij abonnement en een met een Voordeelurenabonnement. Laatst dacht ik, een tijdje na het inchecken, dat ik met de verkeerde kaart had ingecheckt. Dus probeerde uit te checken met deze kaart, en in te checken met de andere kaart. Ik had echter de eerste keer wél met de goede kaart ingecheckt. Met als gevolg dat ik nu opnieuw incheckte met deze kaart, en uitcheckte met een kaart waarmee ik niet ingecheckt was. In beide gevallen werd er €10 van mijn kaart afgeschreven, waardoor ik na deze grap direct €20 lichter was. Beetje lullig van de NS. De volgende dag gebeld en het werd binnen 4 weken teruggestort. NB dit kan alleen gebeuren bij poortjes, waar er aparte scanners zijn voor in- en uitchecken. Wel fijn dat de NS tegenwoordig via een lokaal nummer te bereiken is: 030-7515155.

Klein maar fijn

Tot slot: zelf vindt ik het fijn om op kleinere stations in- en uit te stappen: meestal reis ik van Amsterdam Lelylaan naar Rotterdam Blaak. Een nadeel van grotere stations is dat het lopen tussen fiets en trein vaak meer dan 5 minuten duurt. Vooral bij Amsterdam Centraal is het parkeren van de fiets op een goede plek nogal lastig. Maar dit hangt er natuurlijk maar net vanaf welke stations dicht in de buurt zijn.

Vragen en opmerkingen zijn welkom!

SCHOKKEND!!! Je Raadt NOOIT Waar Deze Fiets Is Gebleven!!!

GijsBait

Of misschien toch wel… Het Fietsdepot! (F.K.A. AFAC)

Ik heb gegokt, en verloren. Voor het eerst in lange tijd zet ik mijn fiets op een “illegale” plek, aan de achterkant van een fietsenrek – wel eraan vast, trouwens – maar de fietswegknippers zijn heden ten dage meedogenloos.

Ik had al een slecht voorgevoel. Er stonden al verdacht weinig fietsen op deze manier geparkeerd – veel minder dan op deze (Streetview) foto te zien is, bijvoorbeeld. Heb het vroeger ook een paar keer gedaan, zonder problemen. De tijden zijn veranderd…

Dus morgenvroeg naar het Bornhout 8, in het verre Westen. Met de bus.

PS Sorry voor de clickbait. Wilde ik even proberen.